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Abstract—We address performance degradation in Federated
Learning (FL) caused by malicious nodes and data bias, focusing
on federated large language models (FedLLM). Instead of com-
putationally intensive gradient-aggregation defenses, we propose
a lightweight method that flags anomalous nodes by analyzing
layer-wise weight updates. After each training round, outlier
weights that significantly deviate from the expected Gaussian
distribution and statistical variables such as the mean, median,
standard deviation, and variance are extracted from the weight
information and provided as input features for a machine learning
detector. Experiments using a small LLM model, DistilBERT,
show that this approach substantially outperforms a baseline
that relies solely on raw weight values while reducing both
communication and computation overhead.

Index Terms—Federated Learning, FedLLM, Transformer,
Machine Learning, Anomaly Detection

I. INTRODUCTION

Large Language Models (LLMs) based on the Transformer
architecture have demonstrated remarkable performance in
various natural language processing tasks through their self-
attention mechanism [1]. However, training these models
requires vast amounts of data, which often contains sensi-
tive information. Federated Learning (FL) has emerged as a
promising solution to this privacy concern.

In FL [2] , multiple nodes (clients) train models locally
using their own local training dataset, hereby referred to as
local models and only the model parameters are shared with a
central server. The global model denotes the aggregated model
at the central server which is periodically distributed to each of
the participating clients. This approach preserves data privacy
since the raw data never leaves the local devices. However,
FL faces significant challenges, particularly when applied to
LLMs (FedLLM), as it becomes vulnerable to various attacks.

Problem setting: FL is vulnerable to poisoning attacks
as trust is assumed towards local clients. If Byzantine-robust
aggregation rules are not used, a single malicious device can
make the learned global model useless. [3]

Possible solutions: Previous research [4] has identified
several security issues in federated learning environments.
Malicious nodes can compromise the global model by inject-
ing poisoned data or manipulating model updates. The main
drawback of various proposed defense mechanisms [5] is their
reliance on computationally expensive gradient aggregation
methods which are optimized for small to medium-sized
DNNs, that are impractical for LLMs with often billions of

weight parameters. Norm-clipping [6] was presented as a more
scalable defense approach; however, it is not able to withstand
more sophisticated attacks that remain within the norm bounds.

Our work: Focusing on Federated Large Language Models
(FedLLMs), we propose a computationally light method that
analyzes the distribution of weight parameters of Transformer
models aggregated by the server after each training round,
aiming to detect influences caused by malicious attacks and
data biases. The approach involves examining statistical met-
rics of the weight parameters sent from each node and ap-
plying machine learning-based binary classification to identify
anomalies. Furthermore, we quantitatively analyze the statisti-
cal metrics within each Transformer layer of the LLM model
that significantly contribute to anomaly detection.

II. FEDERATED LEARNING

Federated Learning (FL) [7] is a distributed machine learn-
ing approach where multiple nodes collaboratively train a
model while keeping their data localized.

A. FL Overview

As illustrated in Figure 1, we consider a typical Federated
Learning (FL) system comprising one server and N clients
(nodes). Let Di denote the local dataset and Mi the local model
held by client Ci, where i ∈ {1, 2, . . . , N}. The objective at the
server is to train a model based on data distributed among the
N clients. Active clients participating in local training compute
the weight vector w of a LLM that minimizes the loss function.
Typically, the server aggregates the weights received from the
N clients as described by Equation (1):

w =

N∑
i=1

piwi (1)

Here, wi denotes the parameter vector trained on the i-th
client, and w denotes the parameter vector aggregated at the
server. pi is defined in Equation (2), and |D| is calculated as
shown in Equation (3).

pi =
|Di|
|D|

≥ 0

(
N∑
i=1

pi = 1

)
(2)

|D| =
N∑
i=1

|Di| (3)
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Fig. 1. Federated Learning Overview

|Di| denotes the total amount of data samples held by the i-
th client. Furthermore, the optimization problem of this weight-
ing can be formulated using w⋆ as shown in Equation (4).

w⋆ = argmin
w

N∑
i=1

piFi(w, Di) (4)

Here, Fi denotes the local loss function of the i-th client. In
general, the local loss function Fi is defined by the empirical
risk computed locally. A Federated Learning process typically
follows these three steps. This sequence of steps is referred to
as a round.

Step 1: The server selects a subset of clients to participate
and sends the current global model to the selected clients.
In the first round, the global model parameters are initialized
randomly. Step 2: Each client trains the received model using
its own local dataset, producing an updated model referred
to as the local model. Later, the clients send their locally
updated model parameters back to the server. Step 3: The
server aggregates the received local models and updates the
global model.

The steps are repeated a number of times until the loss
function converges to a global optimum. This study uses the
Flower Federated Learning framework [8].

B. Threat Model and Related Works

Federated Learning is susceptible to various types of attacks,
including data poisoning: malicious clients inject manipulated
training to distort the model’s behaviour, model poisoning: di-
rect alteration of the model parameters or gradients, backdoor
attacks: hidden behavior embedded into the global model and
Byzantine failures: malicious client behavior to disrupt the
learning process. For backdoor and targeted attacks in Fed-
erated Learning (FL) [9], [10], various defense methods have
been proposed, including: (i) aggregation rules with enhanced
Byzantine robustness such as Krum [11], Median/Trimmed
Mean [12], and Bulyan [13]; (ii) anomaly detection techniques

that sequentially monitor local updates, such as Zeno [14] and
Auror [15]; (iii) robust training via gradient sparsification or
reweighting, such as SparseFed [16] and Reweighting [10];
and (iv) frameworks for constructing secure model repositories,
such as FLSMR [17]. While these methods have demonstrated
certain levels of robustness for conventional neural network
models, there has been few research into defenses specifically
designed for Federated Large Language Models (FedLLM).

III. PROPOSED METHOD

This section proposes a method to ensure the security of
training in the presence of malicious or accidentally faulty
nodes (hereafter collectively referred to as biased nodes) during
FedLLM training. We propose a method for detecting nodes
that perform extremely divergent updates by leveraging statis-
tical indicators in the model parameters. Unlike conventional
approaches that monitor all dimensions of the gradients in
detail, our method relies on lightweight statistical information
and restricts the analysis to specific training layers, aiming
for a design that is scalable even to large-scale models.
Furthermore, in light of prior observations that it is difficult to
determine a universally optimal defense method under diverse
conditions such as varying node counts, data distributions, and
attack strategies [18], [19], this study explores an approach
adaptable to the emerging phase of Federated Large Language
Models (LLMs).

A. Overview

The FedLLM training scenario assumed in this study is
illustrated in Figure 2. Multiple distributed nodes, benign, ma-
licious, or faulty, perform training using their respective local
datasets. After each training round, the updated model param-
eters (typically weight vectors and bias terms) are transmitted
to a central server. On the server side, while aggregating the
received parameters, the proposed anomaly detection method
is used to evaluate whether the current round is normal or
includes anomalous updates. If the round is deemed abnormal,
appropriate countermeasures such as excluding part of the
update information or adjusting the learning rate are applied
to minimize the negative impact on the final global model.

Specifically, on the server side, the update parameters from
all nodes at the end of each round are collectively observed,
and statistical features such as the number of outliers and
standard deviation are extracted. These parameters and their
corresponding statistics, accumulated over the course of train-
ing, are labeled as either normal or abnormal and used to
construct a dataset for binary classification. A machine learning
model is then trained to determine whether an anomaly has
occurred in the FedLLM process. This mechanism aims to
accurately detect abnormal learning behavior by capturing
deviations in the weight distribution, even when malicious or
faulty nodes are present in the system.

B. Assumed Biased Node Conditions

We consider a federated learning scenario in which the
majority of participating nodes are benign, while a small
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Fig. 2. Malicious node–detection pipeline.

number of biased nodes are present. A biased node refers to a
client that, due to intentional or accidental factors, holds data
containing incorrect labels and transmits updates to the server
that deviate from standard training procedures.

For example, in a sentiment analysis task using a large
language model, if certain nodes are configured to continue
training with sentiment labels that are intentionally reversed,
a form of backdoor or poisoning attack, the resulting model
is likely to exhibit biased inference results. In this study, we
quantify this biased state using the following two metrics.

• Poisoning Rate (Rpoison): The proportion of data with
incorrect labels among all data held by biased nodes.

• Bias Rate (Rbias): The proportion of biased nodes relative
to the total number of nodes in the federated learning (FL)
framework.

In the primary experimental setting of this study, we assume
a fixed configuration with Rpoison = 0.1 and Rbias = 0.1.

C. Feature Extraction

To enable binary classification (normal vs. abnormal) of
the FedLLM training process, this study extracts statistical
features from the weight update parameters of each node,
which are aggregated by the server at the end of each round.
The extraction follows the procedure outlined below. A feature
vector composed of multiple statistical metrics is then used to
assess the degree of abnormality in the training behavior.

(1) Layer-wise Weight Parameter Extraction:
In large language models (LLMs) such as DistilBERT, nu-
merous parameters are present in the Transformer layers. This
study assumes the extraction of weight vectors from multiple
layers, with statistical metrics computed for each layer.

(2) Outlier Count Calculation:
Set of weight parameters in a given layer are defined as:

Wℓ = {w1, w2, . . . , wNℓ
} (5)

Let Nℓ denote the number of weights in layer ℓ. In Wℓ,
elements with extremely small or large values are defined as
outliers, and their count is recorded. Typically, a significance
level α is set, and elements in Wℓ that fall below the α-th
percentile Qα or exceed the [100 − α]-th percentile Q100−α

are classified as outliers.

noutliers,ℓ = |{wi ∈ Wℓ | wi < Qα ∨ wi > Q100−α}| (6)

Here, Qα and Q100−α correspond to the α-th and [100−α]-
th percentiles of Wℓ, respectively.

(3) Computation of Basic Weight Statistics:
For the weight parameters Wℓ of each layer ℓ obtained in each
training round, the following statistical values are calculated.
These metrics are expected to vary significantly in the pres-
ence of biased nodes and are therefore considered useful for
anomaly detection:

• minℓ (minimum), maxℓ (maximum)
• Mean: w̄ℓ =

1
Nℓ

∑Nℓ

i=1 wi

• Median medianℓ, standard deviation σℓ

• Quartiles: Q1,ℓ (first quartile), Q3,ℓ (third quartile)

Then a characteristic vector is constructed by combining
these statistics, including the outlier count and standard devia-
tion, and used to assess the degree of abnormality in training.

D. Extraction of the Training Dataset

To train the proposed binary classifier, which determines
whether a given round includes malicious nodes, a training
dataset is constructed using the following procedure.



(1) Collection of FedLLM Training Results:
Both normal FedLLM training and anomalous FedLLM train-
ing (i.e., training with biased nodes) are executed the same
number of times. After each round, the server collects the
updated model parameters. The weights obtained from normal
training are labeled as class 0 (normal), while those from
anomalous training are labeled as class 1 (anomalous).

(2) Computation of Layer-wise Statistics:
For each round and each layer, we compute the statistical
features, including the number of outliers and basic statistics.
Specifically, for DistilBERT, parameters are extracted from
Transformer Layers 1 through 6, and for each layer, we
compute the following set of statistics:

α = {noutliers,ℓ,min
ℓ

,max
ℓ

, w̄ℓ,medianℓ, σℓ, Q1,ℓ, Q3,ℓ} (7)

(3) Labeling and Data Aggregation:
Each feature vector obtained from training rounds is assigned
a binary label (0 for normal, 1 for anomalous) based on the
training condition. As a result, we construct a training dataset
where each feature vector representing weight distribution is
associated with a corresponding label. Formally, this results in
a dataset represented by the matrix Z, as defined below.

Z =


FedLLM1 Round1 Layer1 α1,1 y1
FedLLM1 Round2 Layer2 α1,2 y2

...
...

...
...

...
FedLLMm Roundn Layerp αm,n ym

 (8)

FedLLMi denotes the training instance number, Roundj
represents the round number, Layerp indicates the layer num-
ber, αi,j denotes the feature vector, and yi corresponds to the
ground-truth label (either 0 or 1).

E. Training and Inference of Binary Classifier

Using the labeled training data normal/abnormal generated
as described in Sections 3 and 4, a binary classifier is trained
following the steps below. Five model types are evaluated:
Random Forest, Gradient Boosting, Logistic Regression, SVM,
and XGBoost.

(1) Data Loading and Preprocessing: The dataset (e.g., CSV
files) is loaded, and labels (normal = 0, abnormal = 1) are
verified. Data cleaning addresses missing values and outliers.
Features are standardized using StandardScaler.

(2) Aggregation and Feature Vector Construction: For each
FedLLM instance, round-level statistics (mean, standard de-
viation, etc.) are aggregated into a single feature vector. For
example, 10 rounds produce one aggregated vector.

(3) Train/Validation/Test Split: The dataset is split accord-
ingly. The model is trained on the training set, tuned via
validation, and evaluated on the test set.

(4) Data Balancing: If there is significant class imbalance,
the SMOTE technique [20] is used to increase the number of
samples in the minority class.

(5) Model Construction and Tuning: Random Forest, Gra-
dient Boosting, and XGBoost are tree-based ensembles tuned
via Grid Search, Random Search, or Bayesian Optimization.
SVM and Logistic Regression are tuned similarly.

(6) Evaluation and Saving: The best-performing model is
selected based on Accuracy, Precision, Recall, and F1-Score,
and saved for inference.

(7) Inference: The trained model classifies new FedLLM
rounds as normal or abnormal. If abnormal, the server modifies
its handling of that update.

IV. COMPUTER SIMULATION

This section explains the experimental setup. Part A focuses
on the conditions for normal and abnormal training and data
processing. In Part B an evaluation of the results portrays the
effectiveness of the proposed method.

A. Experimental Conditions

1) Definition of Normal and Abnormal FedLLM Conditions:
To compare the presence and absence of biased nodes, two
types of FedLLM training environments were constructed.

• Normal FedLLM:
– Model: DistilBERT (sentiment analysis task)
– FL Strategy: FedAvg (averaging of weight parameters)
– Number of Nodes: 10
– Number of Rounds: 10
– Dataset: IMDB (50,000 movie review texts)

• Abnormal FedLLM:
– Model: DistilBERT (sentiment analysis task)
– FL Strategy: FedAvg
– Number of Nodes: 10 (one of which is a biased node)
– Number of Rounds: 10
– Dataset: For one node, 10% of the assigned IMDB data

is mislabeled (Poisoning Rate = 0.1). Consequently,
10% of the total nodes contain mislabeled data (Bias
Rate = 0.1).

In the abnormal FedLLM setting, the dataset for the
sentiment-analysis task contains mislabeled samples, making
extreme bias in portions of the final weight updates highly
likely. Both the normal and abnormal configurations are exe-
cuted for the same number of rounds, and the weight param-
eters are recorded at the end of each round for comparison.

2) Dataset Specifications: We conducted 10 runs each of
normal and anomalous FedLLM training, yielding 20 training
sessions in total. Across all sessions, with 10 nodes and
10 rounds, weight parameters for every network layer were
recorded. For each Transformer layer of DistilBERT, we then
computed the outlier count and basic descriptive statistics,
collating the results in CSV format. A significance level
(α = 0.15) was adopted, and outliers were defined with
reference to the 15th and 85th percentiles (Q15 and Q85).

3) Conditions of Machine Learning Models: A binary
classifier was trained on the dataset to distinguish normal
from anomalous runs. Five machine-learning models were
evaluated:



• Random Forest
• Logistic Regression
• Support Vector Machine (SVM)
• Gradient Boosting
• XGBoost

For each model, we performed hyperparameter tuning using
GridSearch combined with five-fold cross-validation (k = 5).
The data were split into training and test sets at a ratio of 4:1.

B. Experimental Results

We compared our proposed approach, which leverages mul-
tiple statistics α (e.g., number of outliers, standard deviation,
mean) extracted from the weight parameters, with a baseline
that uses only a single feature derived from the first element
of the weight parameters. The baseline uses only the first
element wl,first from each layer’s weight matrix Wl as a
one-dimensional feature. By contrast, the proposed method
integrates statistical information such as the outlier count,
standard deviation, maximum, and minimum for every layer,
forming a multi-dimensional feature vector.

1) Baseline Results Using Individual Weight Values: Table I
presents the results of evaluating the baseline method, using a
single weight value (the first element) as the feature, across the
five models. From this table, the SVM achieves comparatively
high performance, with an accuracy of roughly 82% and
an F1-score of about 82%. By contrast, tree-based models
such as Random Forest, XGBoost, and Gradient Boosting
remain at around 69% accuracy, while Logistic Regression
reaches approximately 74%. These findings indicate that a
single weight element cannot adequately capture the bias and
variance characteristic of anomalous nodes.

TABLE I
EVALUATION METRICS FOR FIVE MODELS USING THE BASELINE METHOD

(SINGLE WEIGHT VALUE)

Model Accuracy Precision Recall F1-Score
Random Forest 0.6923 0.6935 0.6923 0.6911
Logistic Regression 0.7436 0.7436 0.7436 0.7436
SVM 0.8205 0.8211 0.8205 0.8203
Gradient Boosting 0.6923 0.6935 0.6923 0.6911
XGBoost 0.6923 0.6952 0.6923 0.6919

2) Results of the Proposed Method (Multiple Features):
Next, Table II presents the results of evaluating the proposed
method, which constructs a multi-dimensional feature set by
combining statistics such as the number of outliers, standard
deviation, and maximum and minimum values across the same
five models. With every model, metrics such as accuracy and
F1-score reached over 95%, achieving a very high discrim-
ination between normal and anomalous training runs. These
findings indicate that integrating diverse weight distribution
information allows clear identification of anomalous node
characteristics.

3) Comparison Between Different Feature Sets: Figure 3
compares the baseline and proposed methods by presenting
the accuracy of each model. The proposed method achieves

TABLE II
EVALUATION METRICS FOR FIVE MODELS USING THE PROPOSED METHOD

(MULTIPLE STATISTICAL FEATURES α)

Model Accuracy Precision Recall F1-Score
Random Forest 0.960 0.950 0.970 0.960
Logistic Regression 0.970 0.975 0.960 0.967
SVM 0.980 0.980 0.970 0.975
Gradient Boosting 0.960 0.945 0.960 0.952
XGBoost 0.930 0.940 0.930 0.935

over 95% Accuracy in nearly all cases. This shows that aggre-
gating statistical features, such as measures of dispersion and
extreme values, provides significantly more effective signals
for anomaly detection than relying on a single weight value.
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4) Analysis of Feature Importance in the Proposed Method:
To assess how the multiple features α employed in the
proposed method contribute to anomaly-node detection, we
computed feature-importance scores using a Random Forest
model. Figure 4 lists the top 20 features ranked by im-
portance. The two highest-ranked features, mean(w̄6) and
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Fig. 4. Feature importance in the proposed method (top 20 features).

mean(w̄4), are both second-order averages of the weights
and therefore capture layer-specific learning biases. Many
other high-importance features focus on dispersion—for ex-
ample, max

(
σ(w6)

)
and σ

(
w̄2

)
represent the maximum and

minimum standard deviations, respectively. This emphasis on
variance reflects the fact that, when biased nodes are present,
a small subset of weights changes dramatically, leading to a
pronounced increase in variance. Features from layers 1 to
6 appear among the top ranks, indicating that biased node
effects may impact any layer. In deep architectures such as
large language models, observing weight distributions across
multiple layers is therefore an effective strategy.



V. CONCLUSION

In this study, we considered a scenario in Federated Learning
for Large Language Models (FedLLM) involving malicious
or faulty nodes (biased nodes). We proposed an anomaly
detection method that extracts statistical features, such as the
number of outliers and standard deviation, from the weight
update parameters collected by the server after each training
round.

Experimental results showed that the baseline method,
which used only single weight values as features, exhibited
significant variations in accuracy depending on the model se-
lected. In contrast, our proposed approach, combining multiple
statistical features, consistently achieved very high accuracy
and F1-score across various machine learning models (e.g.,
Random Forest, SVM, and XGBoost), demonstrating excellent
anomaly detection performance.

Feature importance analysis indicated that the variance
(standard deviation) of weight parameters, the number of
outliers, and extreme values (maximum and minimum) in
the distributions serve as critical indicators for detecting
anomalous nodes. Even a limited number of biased nodes
can introduce noticeable deviations into the weight updates
during each training round, differing significantly from typical
training patterns. Therefore, comprehensively analyzing these
statistical features enhances the accuracy of distinguishing
normal from anomalous behavior.

Future work involves evaluating the effectiveness of the
proposed method under conditions with pronounced non-IID
data distributions and diverse attack strategies.
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